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Digital Expansions and Scalar Multiplication

Scalar multiplication nP in abelian group G (P € G, n € N) using
digital expansion
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
(1 )2P = P
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

[N}
I

27 = valuey(100101), (
(10 )2P = 2(P)+0

_]_)
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

[N}
I

27 = valuey(100101), (
(100 )P = 2(2(P)+0)+0

_]_)
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=2 2
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
(1001 )P = 2(2(2(P)+0)+0)—P
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
(10010 2P = 2(2(2(2(P)+0)+0)—P)+0
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
27P = (100101)2P = 2(2(2(2(2(P) + 0) + 0) — P) + 0) — P.

l.l ALPEN-ADRIA
UNIVERSITAT

AAAAAAAAAAAAAAAAA



Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
27P = (100101)2P = 2(2(2(2(2(P) + 0) + 0) — P) + 0) — P.

@ Number of additions/subtractions ~ Hamming weight of the
binary expansion
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
27P = (100101)2P = 2(2(2(2(2(P) + 0) + 0) — P) + 0) — P.

@ Number of additions/subtractions ~ Hamming weight of the
binary expansion

@ Number of multiplications ~ length of the expansion
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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P € G, n € N) using

digital expansion
-1
n=> n?
j=0

with digits from some digit set D C Z:

27 = valuep(100101), (1:=-1)
27P = (100101)2P = 2(2(2(2(2(P) + 0) + 0) — P) + 0) — P.

@ Number of additions/subtractions ~ Hamming weight of the
binary expansion

@ Number of multiplications ~ length of the expansion
@ Precompute nP for digits n € D.
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Application: Elliptic Curve Cryptography
o Elliptic Curve E: y? =x3 +ax®> + bx + ¢
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Application: Elliptic Curve Cryptography

o Elliptic Curve E: y? =x3 +ax®> + bx + ¢

@ For P € E and n € Z, nP can be calculated
easily.

o No efficient algorithm to calculate n from P
and nP?

@ Fast calculation of nP desirable!

P+Q
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Application: Elliptic Curve Cryptography

o Elliptic Curve E: y?> =x3 +ax®> + bx+ ¢

@ For P € E and n € Z, nP can be calculated
easily.

o No efficient algorithm to calculate n from P
and nP?

@ Fast calculation of nP desirable!

@ In some elliptic curve cryptosystems (Elliptic
Curve Digital Signature Algorithm (ECDSA)
and El Gamal), the calculation of

IP 4+ mQ or {P+ mQ + nR P+Q

for/, m, neZ and P, Q, R € E is also

necessary.
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Joint Expansions for Linear Combinations

Instead of computing /P and m@ separately and adding the results
/P 4+ mQ:
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Joint Expansions for Linear Combinations

Instead of computing /P and m@ separately and adding the results
/P 4+ mQ:

e Compute digital expansion (“joint expansion”) of the vector
/ /-1 .
(m) - an2j
j=0

where the digits n); are now vectors.
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Joint Expansions for Linear Combinations

Instead of computing /P and m@ separately and adding the results
/P 4+ mQ:

e Compute digital expansion (“joint expansion”) of the vector
/ /-1 .
(m) - ZnJQJ
j=0

where the digits n); are now vectors.

(] Precompute 77(1)P + 77(Z)Q for all n = (77( )) eD.
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Joint Expansions for Linear Combinations

Instead of computing /P and m@ separately and adding the results
/P 4+ mQ:

e Compute digital expansion (“joint expansion”) of the vector
AN ‘i N
(m) -2
where the digits n); are now vectors.

o Precompute n(MP 4+ 1A Q for all n = (28) €D.

@ Number of group additions ~ number of nonzero digit vectors
(“joint weight").
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Asymmetric Joint Sparse Form

e For joint expansions of vectors of dimension d, consider the
digit set
D=1{(...,-1,0,1,...,u}

for ¢ <0and u>1.
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Asymmetric Joint Sparse Form

e For joint expansions of vectors of dimension d, consider the
digit set
D=1{(...,-1,0,1,...,u}
for ¢ <0and u>1.

o For given n € Z9, find a joint expansion over the digit set D
minimising the joint weight over all such expansions.
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Asymmetric Joint Sparse Form
e For joint expansions of vectors of dimension d, consider the
digit set
D=1{(...,-1,0,1,...,u}
for ¢ <0and u>1.

o For given n € Z9, find a joint expansion over the digit set D
minimising the joint weight over all such expansions.

@ The minimal expansion is called the Asymmetric Joint Sparse
Form.

l.l ALPEN-ADRIA
UNIVERSITAT

AAAAAAAAAAAAAAA



Asymmetric Joint Sparse Form

e For joint expansions of vectors of dimension d, consider the
digit set

D=1{(...,-1,0,1,...,u}
for ¢ <0and u>1.

o For given n € Z9, find a joint expansion over the digit set D
minimising the joint weight over all such expansions.

@ The minimal expansion is called the Asymmetric Joint Sparse
Form.

@ Analyse the joint weight of this expansion.
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Colexicographically Minimal Expansion

e Consider two joint expansions 17, _;...1g and i), _; ... mg of
the same integer vector n.
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Colexicographically Minimal Expansion

e Consider two joint expansions 17, _;...1g and i), _; ... mg of
the same integer vector n.

o Set ¢; = [n; # 0] and ¢; = [0} # 0] for all .
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Colexicographically Minimal Expansion

e Consider two joint expansions 17, _;...1g and i), _; ... mg of
the same integer vector n.

o Set ¢; = [n; # 0] and ¢; = [0} # 0] for all .

o We say that 1;_;...mq is colexicographically smaller than
M)_q-.-ng if there is a J such that

/ / /
CJ<CJ, Cj—1=Cyj_1,---,C = G-
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Colexicographically Minimal Expansion

e Consider two joint expansions 17, _;...1g and i), _; ... mg of
the same integer vector n.

o Set ¢; =[n; # 0] and ¢/ = [ # 0] for all j.
o We say that 1;_;...mq is colexicographically smaller than
M)_q-.-ng if there is a J such that

/ / /
CJ<CJ, Cj—1=Cyj_1,---,C = G-

o We say that 1;_;...mq is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.
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Colexicographically Minimal Expansion

Consider two joint expansions 1, _; ...7g and 17} _;...ng of
the same integer vector n.

Set ¢; = [n; # 0] and ¢; = [n; # 0] for all j.
We say that 9, _; ...7mq is colexicographically smaller than
M)_q-.-ng if there is a J such that

/ / /
CJ<CJ, Cj—1=Cyj_1,---,C = G-

We say that 19, _;...1q is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.

<1) _ (0001) _ (000})

5 0005/, 1003/,

First expansion is colexicographically smaller. l.lanEN-nDRm
UNIVERSITAT
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Colexicographically Minimal Expansions (2)

@ ‘colexicographically” = “lexicographically from right to left,
i.e., least significant to most significant digit”

'.l ALPEN-ADRIA
UNIVERSITAT

uuuuuuuuuuuuuuuuuuu



Colexicographically Minimal Expansions (2)
@ ‘colexicographically” = “lexicographically from right to left,
i.e., least significant to most significant digit”

@ colexicographically minimal expansion: greedy for zeros from
right to left.
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Colexicographically Minimal Expansions (2)
@ ‘colexicographically” = “lexicographically from right to left,
i.e., least significant to most significant digit”

@ colexicographically minimal expansion: greedy for zeros from
right to left.

Theorem (H.-Muir 2007)

Let n;_;...mq be a colexicographically minimal expansion of
n € Z9 over the digit set

D={(...,—-1,0,1,...,u}q
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Colexicographically Minimal Expansions (2)
@ ‘colexicographically” = “lexicographically from right to left,
i.e., least significant to most significant digit”

@ colexicographically minimal expansion: greedy for zeros from
right to left.
Theorem (H.-Muir 2007)

Let n;_;...mq be a colexicographically minimal expansion of
n € Z9 over the digit set

D={(...,-1,0,1,...,u}q.

Then m;_4 ...my minimises the joint weight over all joint
expansions of n over the digit set D.
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Computing a Colexicographically Minimal Expansion

o Let n € Z9 be given.
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Computing a Colexicographically Minimal Expansion

o Let n € Z9 be given.

o If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.
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Computing a Colexicographically Minimal Expansion

o Let n € Z9 be given.

o If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.

@ Otherwise, we have a non-zero least significant digit. Choose

w > 1 maximally such that there is at least one n € D with
n=mn (mod 2%).
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Computing a Colexicographically Minimal Expansion

o Let n € Z9 be given.

o If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.

@ Otherwise, we have a non-zero least significant digit. Choose
w > 1 maximally such that there is at least one n € D with
n=mn (mod 2%).

@ This guarantees zeros at positions 1, ..., w — 1.
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Computing a Colexicographically Minimal Expansion

Let n € Z9 be given.

If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.

@ Otherwise, we have a non-zero least significant digit. Choose
w > 1 maximally such that there is at least one n € D with
n=mn (mod 2%).

This guarantees zeros at positions 1, ..., w — 1.

By maximality of w, we will have a non-zero digit at position
w.
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Computing a Colexicographically Minimal Expansion

Let n € Z9 be given.

If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.
@ Otherwise, we have a non-zero least significant digit. Choose

w > 1 maximally such that there is at least one i1 € D with
n=mn (mod2%).

@ This guarantees zeros at positions 1, ..., w — 1.

@ By maximality of w, we will have a non-zero digit at position
w.

o If there are two digits n, n’ with n =7’ =n (mod 2%),

choose the one that leads to a larger w in the next step.
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Computing a Colexicographically Minimal Expansion

o Let n € Z9 be given.

o If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.

@ Otherwise, we have a non-zero least significant digit. Choose
w > 1 maximally such that there is at least one i1 € D with
n=mn (mod2%).

@ This guarantees zeros at positions 1, ..., w — 1.

@ By maximality of w, we will have a non-zero digit at position
w.

o If there are two digits n, n’ with n =7’ =n (mod 2%),
choose the one that leads to a larger w in the next step.

o If this does not break the tie, choose the digit such that the
number of choices for the digit in the next step is maximised.
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Computing a Colexicographically Minimal Expansion

o Let n € Z9 be given.

o If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.

@ Otherwise, we have a non-zero least significant digit. Choose
w > 1 maximally such that there is at least one i1 € D with
n=mn (mod2%).

@ This guarantees zeros at positions 1, ..., w — 1.

@ By maximality of w, we will have a non-zero digit at position
w.

o If there are two digits n, n’ with n =7’ =n (mod 2%),
choose the one that leads to a larger w in the next step.

o If this does not break the tie, choose the digit such that the
number of choices for the digit in the next step is maximised.

@ Continue with 2_W(n — "7) l.lngEN.nDRm
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Algorithm

Input: n=(n;,n,..., nd)T €Zd, 1<0,u>1 (with all components of n non-negative if £ = 0).
Output: As_;...A;A, a colexicographically minimal & minimal weight representation of n.

: Dpy+{acZ:t<a<u}
. w ¢ the integer such that 2¥~1 < #Dy, < 2%
: unique(Dy,y) « {a € Dyt u—2""1 <a< (+2¥71}
: nonunique(Dy,) < {a€ Dpy:a<u—2""1 or (4+2% 1 <a}
: {these sets respectively consist of the digits which are unique and non-unique modulo 2%~}
50, L (4,0,...,07
- while n # 0 do
if n=0 (mod 2) then
{We can make column s zero, so we do this.}
10: A0
11:  else
12: {We cannot make column s zero, thus it will be nonzero.}
13: A<+ L+ ((n—L) mod2¥71)
14: Tunique < {7 €{1,2,....d} : a; € unique(Dy,)}

ceNe o s wN e

15: Tnonunique < {7 € {1,2,...,d} : a; € nonunique(Dy,,)}

16: m <« (n— A)/2v1

17: if m; =0 (mod 2) for all i € Zynique then

18: {We can make column s+ w — 1 zero.}

19: for i € Znonunique such that m; is odd do

20: aj < aj+ 2wt

21: mj < mj—1

22: else

23: {Column s + w — 1 will be nonzero.}

24: {Use redundancy at column s to increase redundancy at column s +w — 1.}
25: for i € Tnonunique such that £ + ((m; — £) mod 2*~1) = u — 2%~1 + 1 do
26: aj + aj+ 2wt

27: mi < mj—1

28: {We have n = A (mod 2%~!) and m = (n — A)/2%~ 1.}

20.  As+ A

30 n«(n—A)/2
31 s¢<s+1
32: return Ag_1...A1A0

lﬂLPEN-ﬂDRIﬂ
UNIVERSITAT
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Analysis — Result

For N > 0, let Hy be the joint weight of a random n with
0 < n;j < N for all i (equipped with equidistribution).
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Analysis — Result

For N > 0, let Hy be the joint weight of a random n with
0 < n;j < N for all i (equipped with equidistribution).

Theorem (H.-Kropf 2013)
There exist constants ey, 4, Vo,u,d € R and 6 > 0 such that

E(Hn) = ep.u.dlogy N + Wy (logy N) + O(N~ log N),
V(Hn) = Vi,u,ql0g, N + Wa(log, N) + O(N™° log? N),

where V1 and V5 are continuous, 1-periodic functions on R.

v
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Analysis — Result

For N > 0, let Hy be the joint weight of a random n with
0 < n;j < N for all i (equipped with equidistribution).

Theorem (H.-Kropf 2013)
There exist constants ey, 4, Vo,u,d € R and 6 > 0 such that

E(Hn) = ep.u.dlogy N + Wy (logy N) + O(N~ log N),
V(Hn) = Veu.dlogy N+ Wa(logy N) + O(N~° log? N),

where V1 and V5 are continuous, 1-periodic functions on R.
Furthermore, we have the central l[imit theorem

Hn — eq,u,dlogy N /X =2 ( 1 )
P = <x|= e2 dt+ 0O
( \/Veu,dlogs N S vlog N

for all x € R.

AAAAAAAAAAAAA



Constants for Expectation and Variance
@ For d =1, we have

1 (3 - A)A

€ ul = m and  vp 1 = w—1+ )\)3,

where
2w —£+1) — (=1)* = (=1)

ow ’
Wl <y—r4+1<2v.

A=
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Constants for Expectation and Variance
@ For d =1, we have

1 (3 - A)A

€ ul = W——l-l-)\ and  vp 1 = w—1+ )\)3,

where
2w —£+1) — (=1)* = (=1)

ow ’
Wl <y—r4+1<2v.

A=

e For d € {2, 3,4}, the constants e/, 4 and v, 4 have been
calculated.
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Transducer to Compute the Weight

Transducer to compute the weight from the standard binary

expansion for d =1, £ = —3, u = 11. Gray states correspond to

states which are present in the general description of the l.lnLPEN-nDRIn
. UNIVERSITAT

transducer, but are non-accessible here.
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Transducer to Compute the Weight (2)

@ ©

10

o
1

Transducer to compute the weight from the standard binarl.lanEN.nDRm
UNIVERSITAT

expansion ford =2, (= -2 u=3. ~ ewwmieos



Transducer to Compute the Weight (3)

o For general d, ¢, u, a general description of the transducer is
available.
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Transducer to Compute the Weight (3)

o For general d, ¢, u, a general description of the transducer is
available.

o < 89w states, where 2% 1 < y— ¢ +1 < 2%,
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Transducer to Compute the Weight (3)

o For general d, ¢, u, a general description of the transducer is
available.
o < 89w states, where 2% 1 < y— ¢ +1 < 2%,

@ strongly connected.
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Transducer to Compute the Weight (3)

o For general d, ¢, u, a general description of the transducer is
available.

o < 89w states, where 2% 1 < y— ¢ +1 < 2%,
@ strongly connected.

@ aperiodic.
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Transition and Adjacency Matrices

@ Fix order of the states, initial state is last.
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Transition and Adjacency Matrices

@ Fix order of the states, initial state is last.
o Fore € {0,1}9 let M. = M.(y) be the matrix with entry y”

at position r, s if there is a transition r i> s and 0 otherwise.
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Transition and Adjacency Matrices

@ Fix order of the states, initial state is last.
o Fore € {0,1}9 let M. = M.(y) be the matrix with entry y”

at position r, s if there is a transition r i> s and 0 otherwise.

@ Set A=A(y) = Zee{o,l}d Me(y).
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Transition and Adjacency Matrices

@ Fix order of the states, initial state is last.

o Fore € {0,1}9 let M,

Mec(y) be the matrix with entry y”

elh

at position r, s if there is a transition r — s and 0 otherwise.

> ecqo13d Me(y).

Example ford =2, { = -2, u=3:

@ Set A= A(y)

KLAGENFURT | WIEN GRAZ
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Probability generating function
Let

h(n) = joint weight of AJSF of n,
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Probability generating function
Let

h(n) = joint weight of AJSF of n,

1
E(N;y) =E(u") = Nd Z y".
n>0
[Inlleo <N
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Probability generating function
Let

h(n) = joint weight of AJSF of n,

1 n
E(N;y)=E(UH’V)=W >y

n>0
[Inlloo<N

Writing the standard binary expansion of n as £;(n).

have
J
y' ™ =yt (H Mej(n)()’)> v
=0

for suitable vectors u and v = v(y).

..€o(n), we
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Probability generating function
Let

h(n) = joint weight of AJSF of n,

1 n
E(N;y)=E(UHN)=W >y

n>0
[Inlloo<N

Writing the standard binary expansion of n as £;(n).

have
J
y' ™ =yt (H Mej(n)()’)> v
=0

for suitable vectors u and v = v(y). We consider

J
F(N;y) = Z HMej(n)(y)'

n>0 =0
lInfloo<N

..€o(n), we
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Recursion for F (d = 1)

We consider

J
FIN:y)= > TI M),

0<n<N j=0

'.l ALPEN-ADRIA
UNIVERSITAT

uuuuuuuuuuuuuuuuuuu



Recursion for F (d = 1)

We consider

J
FIN:y)= > TI M),

0<n<N j=0
which fulfils the recursion
F(2N;y) = A(y)F(N;y),

J
F2N + 1;y) = A(y)F(N;y) + Mo [ | M, m (),
j=0
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Recursion for F (d = 1)

We consider

J
FIN:y)= > TI M),

0<n<N j=0
which fulfils the recursion

F(2N;y) = A(y)F(N;y),

J
F2N + 1;y) = A(y)F(N;y) + Mo [ | M, m (),
j=0

yielding

F(N;y) =Y &j(N)A(yY Mo(y HMgk ‘“

j:0 k=j+1 ALPEN-ADRIA

UNIVERSITAT
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Periodic Fluctuation (d = 1)

We consider

J

ZEJ )JA(yY Mo(y) H M (ny(v)-

Jj=0 k=j+1
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Periodic Fluctuation (d = 1)

We consider

J

ZEJ )JA(yY Mo(y) H M (ny(v)-

Jj=0 k=j+1

Let u(y) be the dominant eigenvalue of A(y). Note that y(1)

=2.
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Periodic Fluctuation (d = 1)

We consider

J

Z‘EJ )JA(yY Mo(y) H M (ny(v)-

Jj=0 k=j+1

Let u(y) be the dominant eigenvalue of A(y). Note that p(1) = 2.
Write T~YAT = D + R for D = diag(y,0,...,0) and obtain

J
F(N;y) = pu(y)” Y i (N TD~UD T Mo(y) H M. (ny(¥)+0C(. ..).
Jj=0 k=j+1
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UNIVERSITAT

AAAAAAAAAAAAAAA



Periodic Fluctuation (d = 1)

We consider

J

Z‘EJ )JA(yY Mo(y) H M (ny(v)-

Jj=0 k=j+1

Let u(y) be the dominant eigenvalue of A(y). Note that p(1) = 2.
Write T~YAT = D + R for D = diag(y,0,...,0) and obtain

J
F(N;y) = pu(y)” Y i (N TD~UD T Mo(y) H M. (ny(¥)+0C(. ..).
Jj=0 k=j+1

We finally get
F(N;y) = p(y)°82Nw({logy N};y) + O(...)
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where W(x; y) is 1-periodic in x. '.l



