Analysis of the Binary Asymmetric Joint Sparse Form

Clemens Heuberger^{*} Sara Kropf

Alpen-Adria-Universität Klagenfurt and TU Graz Supported by the Austrian Science Fund: W1230

Menorca, 2013-05-29

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

$$(1)_2 P = P . .$$

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

(10)
$$_2P = 2(P) + 0$$

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

(100)
$$_2P = 2(2(P) + 0) + 0$$

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

(100\overline{1})_2 P = 2(2(2(P) + 0) + 0) - P . .

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

(100\overline{1}0)_2P = 2(2(2(2(P) + 0) + 0) - P) + 0.

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \mathsf{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

$$27P = (100\overline{1}0\overline{1})_2P = 2(2(2(2(2(P) + 0) + 0) - P) + 0) - P.$$

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

with digits from some digit set $\mathcal{D}\subseteq\mathbb{Z}:$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

$$27P = (100\overline{1}0\overline{1})_2P = 2(2(2(2(2(P) + 0) + 0) - P) + 0) - P.$$

 $\bullet\,$ Number of additions/subtractions $\sim\,$ Hamming weight of the binary expansion

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

$$27P = (100\overline{1}0\overline{1})_2P = 2(2(2(2(2(P) + 0) + 0) - P) + 0) - P.$$

- $\bullet\,$ Number of additions/subtractions $\sim\,$ Hamming weight of the binary expansion
- $\bullet\,$ Number of multiplications $\sim\,$ length of the expansion

Scalar multiplication nP in abelian group G ($P \in G$, $n \in \mathbb{N}$) using digital expansion

$$n = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

with digits from some digit set $\mathcal{D}\subseteq\mathbb{Z}:$

$$27 = \text{value}_2(100\overline{1}0\overline{1}), \qquad (\overline{1} := -1)$$

$$27P = (100\overline{1}0\overline{1})_2P = 2(2(2(2(2(P) + 0) + 0) - P) + 0) - P.$$

- $\bullet\,$ Number of additions/subtractions $\sim\,$ Hamming weight of the binary expansion
- Number of multiplications \sim length of the expansion
- Precompute ηP for digits $\eta \in \mathcal{D}$.

(日) (同) (日) (日)

Application: Elliptic Curve Cryptography

• Elliptic Curve
$$E: y^2 = x^3 + ax^2 + bx + c$$

Application: Elliptic Curve Cryptography

- Elliptic Curve $E: y^2 = x^3 + ax^2 + bx + c$
- For $P \in E$ and $n \in \mathbb{Z}$, nP can be calculated easily.
- No efficient algorithm to calculate *n* from *P* and *nP*?
- Fast calculation of *nP* desirable!

Application: Elliptic Curve Cryptography

- Elliptic Curve $E: y^2 = x^3 + ax^2 + bx + c$
- For $P \in E$ and $n \in \mathbb{Z}$, nP can be calculated easily.
- No efficient algorithm to calculate *n* from *P* and *nP*?
- Fast calculation of *nP* desirable!
- In some elliptic curve cryptosystems (Elliptic Curve Digital Signature Algorithm (ECDSA) and El Gamal), the calculation of

$$\ell P + mQ$$
 or $\ell P + mQ + nR$

for ℓ , m, $n \in \mathbb{Z}$ and P, Q, $R \in E$ is also necessary.

Instead of computing ℓP and mQ separately and adding the results $\ell P + mQ$:

Instead of computing ℓP and mQ separately and adding the results $\ell P + mQ$:

• Compute digital expansion ("joint expansion") of the vector

$$inom{\ell}{m} = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

where the digits η_i are now vectors.

Instead of computing ℓP and mQ separately and adding the results $\ell P + mQ$:

• Compute digital expansion ("joint expansion") of the vector

$$\binom{\ell}{m} = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

where the digits η_i are now vectors.

• Precompute $\eta^{(1)}P + \eta^{(2)}Q$ for all $\boldsymbol{\eta} = \begin{pmatrix} \eta^{(1)} \\ \eta^{(2)} \end{pmatrix} \in \mathcal{D}.$

Instead of computing ℓP and mQ separately and adding the results $\ell P + mQ$:

• Compute digital expansion ("joint expansion") of the vector

$$\binom{\ell}{m} = \sum_{j=0}^{\ell-1} \eta_j 2^j$$

where the digits η_i are now vectors.

- Precompute $\eta^{(1)}P + \eta^{(2)}Q$ for all $\boldsymbol{\eta} = \begin{pmatrix} \eta^{(1)} \\ \eta^{(2)} \end{pmatrix} \in \mathcal{D}.$
- Number of group additions \sim number of nonzero digit vectors ("joint weight").

• For joint expansions of vectors of dimension *d*, consider the digit set

$$\mathcal{D} = \{\ell, \ldots, -1, 0, 1, \ldots, u\}^d$$

for $\ell \leq 0$ and $u \geq 1$.

• For joint expansions of vectors of dimension *d*, consider the digit set

$$\mathcal{D} = \{\ell, \ldots, -1, 0, 1, \ldots, u\}^d$$

for $\ell \leq 0$ and $u \geq 1$.

 For given n ∈ Z^d, find a joint expansion over the digit set D minimising the joint weight over all such expansions.

• For joint expansions of vectors of dimension *d*, consider the digit set

$$\mathcal{D} = \{\ell, \ldots, -1, 0, 1, \ldots, u\}^d$$

for $\ell \leq 0$ and $u \geq 1$.

- For given n ∈ Z^d, find a joint expansion over the digit set D minimising the joint weight over all such expansions.
- The minimal expansion is called the Asymmetric Joint Sparse Form.

• For joint expansions of vectors of dimension *d*, consider the digit set

$$\mathcal{D} = \{\ell, \ldots, -1, 0, 1, \ldots, u\}^d$$

for $\ell \leq 0$ and $u \geq 1$.

- For given n ∈ Z^d, find a joint expansion over the digit set D minimising the joint weight over all such expansions.
- The minimal expansion is called the Asymmetric Joint Sparse Form.
- Analyse the joint weight of this expansion.

 Consider two joint expansions η_{L-1}...η₀ and η'_{L-1}...η'₀ of the same integer vector n.

• Consider two joint expansions $\eta_{L-1} \dots \eta_0$ and $\eta'_{L-1} \dots \eta'_0$ of the same integer vector **n**.

• Set
$$c_j = [\eta_j \neq 0]$$
 and $c_j' = [\eta_j' \neq 0]$ for all j .

- Consider two joint expansions η_{L-1}...η₀ and η'_{L-1}...η'₀ of the same integer vector n.
- Set $c_j = [\eta_j \neq 0]$ and $c_j' = [\eta_j' \neq 0]$ for all j.
- We say that $\eta_{L-1} \dots \eta_0$ is colexicographically smaller than $\eta'_{L-1} \dots \eta'_0$ if there is a J such that

$$c_J < c'_J, \quad c_{J-1} = c'_{J-1}, \ldots, c_0 = c'_0.$$

- Consider two joint expansions η_{L-1}...η₀ and η'_{L-1}...η'₀ of the same integer vector n.
- Set $c_j = [\eta_j \neq 0]$ and $c_j' = [\eta_j' \neq 0]$ for all j.
- We say that $\eta_{L-1} \dots \eta_0$ is colexicographically smaller than $\eta'_{L-1} \dots \eta'_0$ if there is a J such that

$$c_J < c'_J, \quad c_{J-1} = c'_{J-1}, \ldots, c_0 = c'_0.$$

• We say that $\eta_{L-1} \dots \eta_0$ is a colexicographically minimal expansion if there is no colexicographically smaller expansion of the same integer vector.

- Consider two joint expansions η_{L-1}...η₀ and η'_{L-1}...η'₀ of the same integer vector n.
- Set $c_j = [\eta_j \neq 0]$ and $c_j' = [\eta_j' \neq 0]$ for all j.
- We say that $\eta_{L-1}\dots\eta_0$ is colexicographically smaller than $\eta'_{L-1}\dots\eta'_0$ if there is a J such that

$$c_J < c'_J, \quad c_{J-1} = c'_{J-1}, \ldots, c_0 = c'_0.$$

- We say that $\eta_{L-1} \dots \eta_0$ is a colexicographically minimal expansion if there is no colexicographically smaller expansion of the same integer vector.
- Example:

$$\begin{pmatrix}1\\5\end{pmatrix}=\begin{pmatrix}0001\\0005\end{pmatrix}_2=\begin{pmatrix}0001\\100\bar{3}\end{pmatrix}_2$$

First expansion is colexicographically smaller.

• "colexicographically" = "lexicographically from right to left, i.e., least significant to most significant digit"

- "colexicographically" = "lexicographically from right to left, i.e., least significant to most significant digit"
- colexicographically minimal expansion: greedy for zeros from right to left.

- "colexicographically" = "lexicographically from right to left, i.e., least significant to most significant digit"
- colexicographically minimal expansion: greedy for zeros from right to left.

Theorem (H.-Muir 2007)

Let $\eta_{L-1} \dots \eta_0$ be a colexicographically minimal expansion of $n \in \mathbb{Z}^d$ over the digit set

$$\mathcal{D} = \{\ell, \ldots, -1, 0, 1, \ldots, u\}^d.$$

- "colexicographically" = "lexicographically from right to left, i.e., least significant to most significant digit"
- colexicographically minimal expansion: greedy for zeros from right to left.

Theorem (H.-Muir 2007)

Let $\eta_{L-1} \dots \eta_0$ be a colexicographically minimal expansion of $\mathbf{n} \in \mathbb{Z}^d$ over the digit set

$$\mathcal{D} = \{\ell, \ldots, -1, 0, 1, \ldots, u\}^d.$$

Then $\eta_{L-1} \dots \eta_0$ minimises the joint weight over all joint expansions of **n** over the digit set \mathcal{D} .

• Let $\mathbf{n} \in \mathbb{Z}^d$ be given.

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of n are even, choose a digit 0 and continue with (1/2)n.

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of **n** are even, choose a digit 0 and continue with $(1/2)\mathbf{n}$.
- Otherwise, we have a non-zero least significant digit. Choose $w \ge 1$ maximally such that there is at least one $\eta \in D$ with $\mathbf{n} \equiv \eta \pmod{2^w}$.

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of **n** are even, choose a digit 0 and continue with $(1/2)\mathbf{n}$.
- Otherwise, we have a non-zero least significant digit. Choose $w \ge 1$ maximally such that there is at least one $\eta \in D$ with $\mathbf{n} \equiv \eta \pmod{2^w}$.
- This guarantees zeros at positions 1, ..., w 1.

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of **n** are even, choose a digit 0 and continue with $(1/2)\mathbf{n}$.
- Otherwise, we have a non-zero least significant digit. Choose $w \ge 1$ maximally such that there is at least one $\eta \in D$ with $\mathbf{n} \equiv \eta \pmod{2^w}$.
- This guarantees zeros at positions 1, ..., w 1.
- By maximality of *w*, we will have a non-zero digit at position *w*.

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of **n** are even, choose a digit 0 and continue with $(1/2)\mathbf{n}$.
- Otherwise, we have a non-zero least significant digit. Choose $w \ge 1$ maximally such that there is at least one $\eta \in D$ with $\mathbf{n} \equiv \eta \pmod{2^w}$.
- This guarantees zeros at positions 1, ..., w 1.
- By maximality of *w*, we will have a non-zero digit at position *w*.
- If there are two digits η, η' with η ≡ η' ≡ n (mod 2^w), choose the one that leads to a larger w in the next step.

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of **n** are even, choose a digit 0 and continue with $(1/2)\mathbf{n}$.
- Otherwise, we have a non-zero least significant digit. Choose $w \ge 1$ maximally such that there is at least one $\eta \in D$ with $\mathbf{n} \equiv \eta \pmod{2^w}$.
- This guarantees zeros at positions 1, ..., w 1.
- By maximality of *w*, we will have a non-zero digit at position *w*.
- If there are two digits η, η' with η ≡ η' ≡ n (mod 2^w), choose the one that leads to a larger w in the next step.
- If this does not break the tie, choose the digit such that the number of choices for the digit in the next step is maximised.

イロト イポト イヨト イヨト

- Let $\mathbf{n} \in \mathbb{Z}^d$ be given.
- If all coordinates of **n** are even, choose a digit 0 and continue with $(1/2)\mathbf{n}$.
- Otherwise, we have a non-zero least significant digit. Choose $w \ge 1$ maximally such that there is at least one $\eta \in D$ with $\mathbf{n} \equiv \eta \pmod{2^w}$.
- This guarantees zeros at positions 1, ..., w 1.
- By maximality of *w*, we will have a non-zero digit at position *w*.
- If there are two digits η, η' with η ≡ η' ≡ n (mod 2^w), choose the one that leads to a larger w in the next step.
- If this does not break the tie, choose the digit such that the number of choices for the digit in the next step is maximised.
- Continue with $2^{-w}(\mathbf{n} \boldsymbol{\eta})$.

イロト イポト イヨト イヨト

Algorithm

Input: $\mathbf{n} = (n_1, n_2, \dots, n_d)^{\mathsf{T}} \in \mathbb{Z}^d, \ \ell \leq 0, \ u \geq 1$ (with all components of \mathbf{n} non-negative if $\ell = 0$). Output: $A_{s-1} \dots A_1 A_0$, a colexicographically minimal & minimal weight representation of \mathbf{n} .

1: $D_{\ell,\mu} \leftarrow \{a \in \mathbb{Z} : \ell \leq a \leq u\}$ 2. $w \leftarrow$ the integer such that $2^{w-1} \le \#D_{\ell,u} \le 2^w$ 3: unique($D_{\ell,\mu}$) $\leftarrow \{a \in D_{\ell,\mu} : \mu - 2^{w-1} < a < \ell + 2^{w-1}\}$ 4: nonunique $(D_{\ell,u}) \leftarrow \{a \in D_{\ell,u} : a \le u - 2^{w-1} \text{ or } \ell + 2^{w-1} \le a\}$ 5: {these sets respectively consist of the digits which are unique and non-unique modulo 2^{w-1} } 6: $s \leftarrow 0, L \leftarrow (\ell, \ell, \dots, \ell)^T$ 7: while $n \neq \vec{0}$ do if $n \equiv \vec{0} \pmod{2}$ then 8. {We can make column s zero, so we do this.} Q٠ $\vec{A} \leftarrow \vec{0}$ 10 11: else 12: {We cannot make column s zero, thus it will be nonzero.} $A \leftarrow L + ((\mathbf{n} - L) \mod 2^{w-1})$ 13: $\mathcal{I}_{unique} \leftarrow \{i \in \{1, 2, \dots, d\} : a_i \in unique(D_{\ell, u})\}$ 14: $\mathcal{I}_{\text{nonunique}} \leftarrow \{i \in \{1, 2, \dots, d\} : a_i \in \text{nonunique}(D_{\ell, u})\}$ 15: $\mathbf{m} \leftarrow (\mathbf{n} - A)/2^{w-1}$ 16: 17: if $m_i \equiv 0 \pmod{2}$ for all $i \in \mathcal{I}_{unique}$ then {We can make column s + w - 1 zero.} 18: for $i \in \mathcal{I}_{nonunique}$ such that m_i is odd do 19: $a_i \leftarrow a_i + 2^{w-1}$ 20: 21: $m_i \leftarrow m_i - 1$ 22: else {Column s + w - 1 will be nonzero.} 23: {Use redundancy at column s to increase redundancy at column s + w - 1.} 24: for $i \in \mathcal{I}_{\text{nonunique}}$ such that $\ell + ((m_i - \ell) \mod 2^{w-1}) = u - 2^{w-1} + 1$ do 25: $a_i \leftarrow a_i + 2^{\dot{w}-1}$ 26. 27: $m_i \leftarrow m_i - 1$ {We have $\mathbf{n} \equiv A \pmod{2^{w-1}}$ and $\mathbf{m} = (\mathbf{n} - A)/2^{w-1}$.} 28: 29: $A_c \leftarrow A$ $\mathbf{n} \leftarrow (\mathbf{n} - A)/2$ 30 $s \leftarrow s + 1$ 31 32: return $A_{s-1} \dots A_1 A_0$

Analysis — Result

For N > 0, let H_N be the joint weight of a random **n** with $0 \le n_i < N$ for all *i* (equipped with equidistribution).

Analysis — Result

For N > 0, let H_N be the joint weight of a random **n** with $0 \le n_i < N$ for all *i* (equipped with equidistribution).

Theorem (H.-Kropf 2013)

There exist constants $e_{\ell,u,d}$, $v_{\ell,u,d} \in \mathbb{R}$ and $\delta > 0$ such that

 $\mathbb{E}(H_N) = e_{\ell,u,d} \log_2 N + \Psi_1(\log_2 N) + \mathcal{O}(N^{-\delta} \log N),$ $\mathbb{V}(H_N) = v_{\ell,u,d} \log_2 N + \Psi_2(\log_2 N) + \mathcal{O}(N^{-\delta} \log^2 N),$

where Ψ_1 and Ψ_2 are continuous, 1-periodic functions on \mathbb{R} .

(日) (同) (日) (日)

Analysis — Result

For N > 0, let H_N be the joint weight of a random **n** with $0 \le n_i < N$ for all *i* (equipped with equidistribution).

Theorem (H.-Kropf 2013)

There exist constants $e_{\ell,u,d}$, $v_{\ell,u,d} \in \mathbb{R}$ and $\delta > 0$ such that

$$\begin{split} \mathbb{E}(H_N) &= e_{\ell,u,d} \log_2 N + \Psi_1(\log_2 N) + \mathcal{O}(N^{-\delta} \log N), \\ \mathbb{V}(H_N) &= v_{\ell,u,d} \log_2 N + \Psi_2(\log_2 N) + \mathcal{O}(N^{-\delta} \log^2 N), \end{split}$$

where Ψ_1 and Ψ_2 are continuous, 1-periodic functions on \mathbb{R} . Furthermore, we have the central limit theorem

$$\mathbb{P}\left(\frac{H_N - e_{\ell,u,d}\log_2 N}{\sqrt{v_{\ell,u,d}\log_2 N}} < x\right) = \int_{-\infty}^x e^{\frac{-t^2}{2}} dt + \mathcal{O}\left(\frac{1}{\sqrt[4]{\log N}}\right)$$

for all $x \in \mathbb{R}$.

(日) (同) (日) (日)

Constants for Expectation and Variance

$$e_{\ell,u,1}=rac{1}{w-1+\lambda} \quad ext{and} \quad v_{\ell,u,1}=rac{(3-\lambda)\lambda}{(w-1+\lambda)^3},$$

where

$$\lambda = \frac{2(u-\ell+1)-(-1)^{\ell}-(-1)^{u}}{2^{w}},$$

$$2^{w-1} \le u-\ell+1 < 2^{w}.$$

Constants for Expectation and Variance

$$e_{\ell,u,1}=rac{1}{w-1+\lambda} \quad ext{and} \quad v_{\ell,u,1}=rac{(3-\lambda)\lambda}{(w-1+\lambda)^3},$$

where

$$\lambda = \frac{2(u - \ell + 1) - (-1)^{\ell} - (-1)^{u}}{2^{w}},$$

$$2^{w-1} \le u - \ell + 1 < 2^{w}.$$

• For $d \in \{2, 3, 4\}$, the constants $e_{\ell,u,d}$ and $v_{\ell,u,d}$ have been calculated.

Transducer to compute the weight from the standard binary expansion for d = 1, $\ell = -3$, u = 11. Gray states correspond to states which are present in the general description of the transducer, but are non-accessible here.

Transducer to compute the weight from the standard binar expansion for d = 2, $\ell = -2$, u = 3.

• For general d, ℓ , u, a general description of the transducer is available.

- For general d, ℓ , u, a general description of the transducer is available.
- $< 8^d w$ states, where $2^{w-1} \le u \ell + 1 < 2^w$.

- For general d, ℓ , u, a general description of the transducer is available.
- $< 8^d w$ states, where $2^{w-1} \le u \ell + 1 < 2^w$.
- strongly connected.

- For general d, ℓ , u, a general description of the transducer is available.
- $< 8^d w$ states, where $2^{w-1} \le u \ell + 1 < 2^w$.
- strongly connected.
- aperiodic.

• Fix order of the states, initial state is last.

- Fix order of the states, initial state is last.
- For ε ∈ {0,1}^d let M_ε = M_ε(y) be the matrix with entry y^h at position r, s if there is a transition r ^{ε|h}→ s and 0 otherwise.

- Fix order of the states, initial state is last.
- For ε ∈ {0,1}^d let M_ε = M_ε(y) be the matrix with entry y^h at position r, s if there is a transition r ^{ε|h}/_→ s and 0 otherwise.
- Set $A = A(y) = \sum_{\varepsilon \in \{0,1\}^d} M_{\varepsilon}(y)$.

- Fix order of the states, initial state is last.
- For $arepsilon \in \{0,1\}^d$ let $M_arepsilon = M_arepsilon(y)$ be the matrix with entry y^h

at position r, s if there is a transition $r \xrightarrow{\varepsilon \mid h} s$ and 0 otherwise.

• Set $A = A(y) = \sum_{\varepsilon \in \{0,1\}^d} M_{\varepsilon}(y)$.

Example for d = 2, $\ell = -2$, u = 3:

	1 .				/ -					-												
	/0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0\	
	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0	0	
	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	0	0	0	0	
	3y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	у	0	0	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
	У	0	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
	2y	у	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
A =	y y	0	0	0	у	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	
	у	0	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	
	2y	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
	У	0	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	
	у	0	0	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
	y	у	у	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
	2y	0	у	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
	2y	y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
	(3y)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ŷ	0	•0	0	4/	

 $h(\mathbf{n}) = \text{joint weight of AJSF of } \mathbf{n},$

$$h(\mathbf{n}) = \text{joint weight of AJSF of } \mathbf{n},$$
$$E(N; y) = \mathbb{E}(u^{H_N}) = \frac{1}{N^d} \sum_{\substack{\mathbf{n} \ge \mathbf{0} \\ \|\mathbf{n}\|_{\infty} < N}} y^{h(\mathbf{n})}.$$

$$h(\mathbf{n}) = \text{joint weight of AJSF of } \mathbf{n},$$
$$E(N; y) = \mathbb{E}(u^{H_N}) = \frac{1}{N^d} \sum_{\substack{\mathbf{n} \ge \mathbf{0} \\ \|\mathbf{n}\|_{\infty} < N}} y^{h(\mathbf{n})}.$$

Writing the standard binary expansion of **n** as $\varepsilon_J(\mathbf{n}) \dots \varepsilon_0(\mathbf{n})$, we have

$$y^{h(\mathbf{n})} = u^{\mathsf{T}} \left(\prod_{j=0}^{J} M_{\varepsilon_j(\mathbf{n})}(y)\right) v$$

for suitable vectors u and v = v(y).

$$h(\mathbf{n}) = \text{joint weight of AJSF of } \mathbf{n},$$
$$E(N; y) = \mathbb{E}(u^{H_N}) = \frac{1}{N^d} \sum_{\substack{\mathbf{n} \ge \mathbf{0} \\ \|\mathbf{n}\|_{\infty} < N}} y^{h(\mathbf{n})}.$$

Writing the standard binary expansion of **n** as $\varepsilon_J(\mathbf{n}) \dots \varepsilon_0(\mathbf{n})$, we have

$$y^{h(\mathbf{n})} = u^{\mathsf{T}} \left(\prod_{j=0}^{J} M_{\varepsilon_j(\mathbf{n})}(y)\right) v$$

for suitable vectors u and v = v(y). We consider

$$F(N; y) = \sum_{\substack{\mathbf{n} \ge \mathbf{0} \\ \|\mathbf{n}\|_{\infty} < N}} \prod_{j=0}^{J} M_{\varepsilon_j(\mathbf{n})}(y).$$

Recursion for F(d = 1)

We consider

$$F(N; y) = \sum_{0 \le n < N} \prod_{j=0}^{J} M_{\varepsilon_j(n)}(y),$$

Recursion for F(d = 1)

We consider

$$F(N; y) = \sum_{0 \le n < N} \prod_{j=0}^{J} M_{\varepsilon_j(n)}(y),$$

which fulfils the recursion

$$F(2N; y) = A(y)F(N; y),$$

$$F(2N+1; y) = A(y)F(N; y) + M_0 \prod_{j=0}^{J} M_{\varepsilon_j(N)}(y),$$

Recursion for F(d = 1)

We consider

$$F(N; y) = \sum_{0 \le n < N} \prod_{j=0}^{J} M_{\varepsilon_j(n)}(y),$$

which fulfils the recursion

$$F(2N; y) = A(y)F(N; y),$$

$$F(2N+1; y) = A(y)F(N; y) + M_0 \prod_{j=0}^{J} M_{\varepsilon_j(N)}(y),$$

yielding

$$F(N; y) = \sum_{j=0}^{J} \varepsilon_{j}(N) A(y)^{j} M_{0}(y) \prod_{k=j+1}^{J} M_{\varepsilon_{k}(N)}(y)$$

We consider

$$F(N; y) = \sum_{j=0}^{J} \varepsilon_j(N) A(y)^j M_0(y) \prod_{k=j+1}^{J} M_{\varepsilon_k(N)}(y).$$

We consider

$$F(N; y) = \sum_{j=0}^{J} \varepsilon_j(N) A(y)^j M_0(y) \prod_{k=j+1}^{J} M_{\varepsilon_k(N)}(y).$$

Let $\mu(y)$ be the dominant eigenvalue of A(y). Note that $\mu(1) = 2$.

We consider

$$F(N; y) = \sum_{j=0}^{J} \varepsilon_j(N) A(y)^j M_0(y) \prod_{k=j+1}^{J} M_{\varepsilon_k(N)}(y).$$

Let $\mu(y)$ be the dominant eigenvalue of A(y). Note that $\mu(1) = 2$. Write $T^{-1}AT = D + R$ for $D = \text{diag}(\mu, 0, \dots, 0)$ and obtain

$$F(N; y) = \mu(y)^{J} \sum_{j=0}^{J} \varepsilon_{j}(N) T D^{-(J-j)} T^{-1} M_{0}(y) \prod_{k=j+1}^{J} M_{\varepsilon_{k}(N)}(y) + O(\ldots).$$

We consider

$$F(N; y) = \sum_{j=0}^{J} \varepsilon_j(N) A(y)^j M_0(y) \prod_{k=j+1}^{J} M_{\varepsilon_k(N)}(y).$$

Let $\mu(y)$ be the dominant eigenvalue of A(y). Note that $\mu(1) = 2$. Write $T^{-1}AT = D + R$ for $D = \text{diag}(\mu, 0, \dots, 0)$ and obtain

$$F(N; y) = \mu(y)^{J} \sum_{j=0}^{J} \varepsilon_{j}(N) T D^{-(J-j)} T^{-1} M_{0}(y) \prod_{k=j+1}^{J} M_{\varepsilon_{k}(N)}(y) + O(\ldots).$$

We finally get

$$F(N; y) = \mu(y)^{\log_2 N} \Psi(\{\log_2 N\}; y) + O(\ldots)$$

where $\Psi(x; y)$ is 1-periodic in *x*.

