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Digital Expansions and Scalar Multiplication
Scalar multiplication nP in abelian group G (P ∈ G , n ∈ N) using
digital expansion

n =
`−1∑
j=0

ηj2
j

with digits from some digit set D ⊆ Z:

27 = value2(1001̄01̄), (1̄ := −1)

27P =

(1

001̄01̄

)2P =

2(2(2(2(2(P) + 0) + 0)− P) + 0)− P

.

Number of additions/subtractions ∼ Hamming weight of the
binary expansion

Number of multiplications ∼ length of the expansion

Precompute ηP for digits η ∈ D.
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Application: Elliptic Curve Cryptography

Elliptic Curve E : y2 = x3 + ax2 + bx + c

For P ∈ E and n ∈ Z, nP can be calculated
easily.

No efficient algorithm to calculate n from P
and nP?

Fast calculation of nP desirable!

In some elliptic curve cryptosystems (Elliptic
Curve Digital Signature Algorithm (ECDSA)
and El Gamal), the calculation of

`P + mQ or `P + mQ + nR

for `, m, n ∈ Z and P, Q, R ∈ E is also
necessary.

P

Q

P +Q

−P
R

2R

E
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Joint Expansions for Linear Combinations
Instead of computing `P and mQ separately and adding the results
`P + mQ:

Compute digital expansion (“joint expansion”) of the vector(
`
m

)
=

`−1∑
j=0

ηj2
j

where the digits ηj are now vectors.

Precompute η(1)P + η(2)Q for all η =
( η(1)
η(2)

)
∈ D.

Number of group additions ∼ number of nonzero digit vectors
(“joint weight”).
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Asymmetric Joint Sparse Form

For joint expansions of vectors of dimension d , consider the
digit set

D = {`, . . . ,−1, 0, 1, . . . , u}d

for ` ≤ 0 and u ≥ 1.

For given n ∈ Zd , find a joint expansion over the digit set D
minimising the joint weight over all such expansions.

The minimal expansion is called the Asymmetric Joint Sparse
Form.

Analyse the joint weight of this expansion.
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Colexicographically Minimal Expansion

Consider two joint expansions ηL−1 . . .η0 and η′L−1 . . .η
′
0 of

the same integer vector n.

Set cj = [ηj 6= 0] and c ′j = [η′j 6= 0] for all j .

We say that ηL−1 . . .η0 is colexicographically smaller than
η′L−1 . . .η

′
0 if there is a J such that

cJ < c ′J , cJ−1 = c ′J−1, . . . , c0 = c ′0.

We say that ηL−1 . . .η0 is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.

Example: (
1
5

)
=

(
0001
0005

)
2

=

(
0001
1003̄

)
2

.

First expansion is colexicographically smaller.

6



Colexicographically Minimal Expansion

Consider two joint expansions ηL−1 . . .η0 and η′L−1 . . .η
′
0 of

the same integer vector n.

Set cj = [ηj 6= 0] and c ′j = [η′j 6= 0] for all j .

We say that ηL−1 . . .η0 is colexicographically smaller than
η′L−1 . . .η

′
0 if there is a J such that

cJ < c ′J , cJ−1 = c ′J−1, . . . , c0 = c ′0.

We say that ηL−1 . . .η0 is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.

Example: (
1
5

)
=

(
0001
0005

)
2

=

(
0001
1003̄

)
2

.

First expansion is colexicographically smaller.

6



Colexicographically Minimal Expansion

Consider two joint expansions ηL−1 . . .η0 and η′L−1 . . .η
′
0 of

the same integer vector n.

Set cj = [ηj 6= 0] and c ′j = [η′j 6= 0] for all j .

We say that ηL−1 . . .η0 is colexicographically smaller than
η′L−1 . . .η

′
0 if there is a J such that

cJ < c ′J , cJ−1 = c ′J−1, . . . , c0 = c ′0.

We say that ηL−1 . . .η0 is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.

Example: (
1
5

)
=

(
0001
0005

)
2

=

(
0001
1003̄

)
2

.

First expansion is colexicographically smaller.

6



Colexicographically Minimal Expansion

Consider two joint expansions ηL−1 . . .η0 and η′L−1 . . .η
′
0 of

the same integer vector n.

Set cj = [ηj 6= 0] and c ′j = [η′j 6= 0] for all j .

We say that ηL−1 . . .η0 is colexicographically smaller than
η′L−1 . . .η

′
0 if there is a J such that

cJ < c ′J , cJ−1 = c ′J−1, . . . , c0 = c ′0.

We say that ηL−1 . . .η0 is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.

Example: (
1
5

)
=

(
0001
0005

)
2

=

(
0001
1003̄

)
2

.

First expansion is colexicographically smaller.

6



Colexicographically Minimal Expansion

Consider two joint expansions ηL−1 . . .η0 and η′L−1 . . .η
′
0 of

the same integer vector n.

Set cj = [ηj 6= 0] and c ′j = [η′j 6= 0] for all j .

We say that ηL−1 . . .η0 is colexicographically smaller than
η′L−1 . . .η

′
0 if there is a J such that

cJ < c ′J , cJ−1 = c ′J−1, . . . , c0 = c ′0.

We say that ηL−1 . . .η0 is a colexicographically minimal
expansion if there is no colexicographically smaller expansion
of the same integer vector.

Example: (
1
5

)
=

(
0001
0005

)
2

=

(
0001
1003̄

)
2

.

First expansion is colexicographically smaller.

6



Colexicographically Minimal Expansions (2)

“colexicographically” = “lexicographically from right to left,
i.e., least significant to most significant digit”

colexicographically minimal expansion: greedy for zeros from
right to left.

Theorem (H.-Muir 2007)

Let ηL−1 . . .η0 be a colexicographically minimal expansion of
n ∈ Zd over the digit set

D = {`, . . . ,−1, 0, 1, . . . , u}d .

Then ηL−1 . . .η0 minimises the joint weight over all joint
expansions of n over the digit set D.
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Computing a Colexicographically Minimal Expansion

Let n ∈ Zd be given.

If all coordinates of n are even, choose a digit 0 and continue
with (1/2)n.

Otherwise, we have a non-zero least significant digit. Choose
w ≥ 1 maximally such that there is at least one η ∈ D with
n ≡ η (mod 2w ).

This guarantees zeros at positions 1, . . . , w − 1.

By maximality of w , we will have a non-zero digit at position
w .

If there are two digits η, η′ with η ≡ η′ ≡ n (mod 2w ),
choose the one that leads to a larger w in the next step.

If this does not break the tie, choose the digit such that the
number of choices for the digit in the next step is maximised.

Continue with 2−w (n− η).
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Algorithm
Input: n = (n1, n2, . . . , nd)T ∈ Zd , ` ≤ 0, u ≥ 1 (with all components of n non-negative if ` = 0).
Output: As−1 . . .A1A0, a colexicographically minimal & minimal weight representation of n.

1: D`,u ← {a ∈ Z : ` ≤ a ≤ u}
2: w ← the integer such that 2w−1 ≤ #D`,u < 2w

3: unique(D`,u)← {a ∈ D`,u : u − 2w−1 < a < `+ 2w−1}
4: nonunique(D`,u)← {a ∈ D`,u : a ≤ u − 2w−1 or `+ 2w−1 ≤ a}
5: {these sets respectively consist of the digits which are unique and non-unique modulo 2w−1.}
6: s ← 0, L← (`, `, . . . , `)T

7: while n 6= ~0 do
8: if n ≡ ~0 (mod 2) then
9: {We can make column s zero, so we do this.}

10: A← ~0
11: else
12: {We cannot make column s zero, thus it will be nonzero.}
13: A← L + ((n− L) mod 2w−1)
14: Iunique ← {i ∈ {1, 2, . . . , d} : ai ∈ unique(D`,u)}
15: Inonunique ← {i ∈ {1, 2, . . . , d} : ai ∈ nonunique(D`,u)}
16: m← (n− A)/2w−1

17: if mi ≡ 0 (mod 2) for all i ∈ Iunique then
18: {We can make column s + w − 1 zero.}
19: for i ∈ Inonunique such that mi is odd do
20: ai ← ai + 2w−1

21: mi ← mi − 1
22: else
23: {Column s + w − 1 will be nonzero.}
24: {Use redundancy at column s to increase redundancy at column s + w − 1.}
25: for i ∈ Inonunique such that `+ ((mi − `) mod 2w−1) = u − 2w−1 + 1 do
26: ai ← ai + 2w−1

27: mi ← mi − 1
28: {We have n ≡ A (mod 2w−1) and m = (n− A)/2w−1.}
29: As ← A
30: n← (n− A)/2
31: s ← s + 1
32: return As−1 . . .A1A0
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Analysis — Result
For N > 0, let HN be the joint weight of a random n with
0 ≤ ni < N for all i (equipped with equidistribution).

Theorem (H.-Kropf 2013)

There exist constants e`,u,d , v`,u,d ∈ R and δ > 0 such that

E(HN) = e`,u,d log2N + Ψ1(log2N) +O(N−δ logN),

V(HN) = v`,u,d log2N + Ψ2(log2N) +O(N−δ log2N),

where Ψ1 and Ψ2 are continuous, 1-periodic functions on R.

Furthermore, we have the central limit theorem

P

(
HN − e`,u,d log2N√

v`,u,d log2N
< x

)
=

∫ x

−∞
e
−t2
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Constants for Expectation and Variance

For d = 1, we have

e`,u,1 =
1

w − 1 + λ
and v`,u,1 =

(3− λ)λ

(w − 1 + λ)3
,

where

λ =
2(u − `+ 1)− (−1)` − (−1)u

2w
,

2w−1 ≤ u − `+ 1 < 2w .

For d ∈ {2, 3, 4}, the constants e`,u,d and v`,u,d have been
calculated.
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Transducer to Compute the Weight

0 1

1, 01

0, 03 1, 03

1, 02

1 |1 0 |1

0, 1 |0
0 |0

1 |0

0, 1 |0

1 |0
0 |0

0 |0 1 |0

Transducer to compute the weight from the standard binary
expansion for d = 1, ` = −3, u = 11. Gray states correspond to
states which are present in the general description of the
transducer, but are non-accessible here.
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Transducer to Compute the Weight (2)

10 ∅
00 1

00 ∅
10 1

0
1

1
1

11 ∅
01 2

11 ∅
10 2

10 ∅
11 2

01 ∅
11 2

10 {1}
00 1

11 {1}
10 2

11 {1}
01 2

00 ∅
00 1

1
0

0
0

10 ∅
10 2

10 ∅
01 2

01 ∅
10 2

01 ∅
01 2

00 {2}
10 1

10 {2}
11 2

01 {2}
11 2

Transducer to compute the weight from the standard binary
expansion for d = 2, ` = −2, u = 3.

13



Transducer to Compute the Weight (3)

For general d , `, u, a general description of the transducer is
available.

< 8dw states, where 2w−1 ≤ u − `+ 1 < 2w .

strongly connected.

aperiodic.
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Transition and Adjacency Matrices

Fix order of the states, initial state is last.

For ε ∈ {0, 1}d let Mε = Mε(y) be the matrix with entry yh

at position r , s if there is a transition r
ε|h−−→ s and 0 otherwise.

Set A = A(y) =
∑

ε∈{0,1}d Mε(y).

Example for d = 2, ` = −2, u = 3:

A =



0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

3y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
y 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
y 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

2y y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
y 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
y 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

2y 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
y 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
y 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
y y y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

2y 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
2y y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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Probability generating function
Let

h(n) = joint weight of AJSF of n,

E (N; y) = E(uHN ) =
1

Nd

∑
n≥0

‖n‖∞<N

yh(n).

Writing the standard binary expansion of n as εJ(n) . . . ε0(n), we
have

yh(n) = uT
( J∏

j=0

Mεj (n)(y)

)
v

for suitable vectors u and v = v(y). We consider

F (N; y) =
∑
n≥0

‖n‖∞<N

J∏
j=0

Mεj (n)(y).
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Recursion for F (d = 1)
We consider

F (N; y) =
∑

0≤n<N

J∏
j=0

Mεj (n)(y),

which fulfils the recursion

F (2N; y) = A(y)F (N; y),

F (2N + 1; y) = A(y)F (N; y) + M0

J∏
j=0

Mεj (N)(y),

yielding

F (N; y) =
J∑

j=0

εj(N)A(y)jM0(y)
J∏

k=j+1

Mεk (N)(y).

17
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Periodic Fluctuation (d = 1)
We consider

F (N; y) =
J∑

j=0

εj(N)A(y)jM0(y)
J∏

k=j+1

Mεk (N)(y).

Let µ(y) be the dominant eigenvalue of A(y). Note that µ(1) = 2.
Write T−1AT = D + R for D = diag(µ, 0, . . . , 0) and obtain

F (N; y) = µ(y)J
J∑

j=0

εj(N)TD−(J−j)T−1M0(y)
J∏

k=j+1

Mεk (N)(y)+O(. . .).

We finally get

F (N; y) = µ(y)log2 NΨ({log2N}; y) + O(. . .)

where Ψ(x ; y) is 1-periodic in x .
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